Quantitative control of CaCO3 growth on quartz crystal microbalance sensors as a signal amplification method.

نویسندگان

  • Congcong Wu
  • Zhaomei Sun
  • Li-Shang Liu
چکیده

The surface crystallization of CaCO3 on gold was monitored by a quartz crystal microbalance (QCM). Quantitative control of the grown crystals was realized by adjusting the ratio of two functional groups, -N(CH3)3 and -COOH, on SAMs. Crystals with uniform size, morphology and polymorphism were obtained. The amount of crystals formed was found to increase with an increase in the -COOH group. The proposed quantitative control of crystallization can be an effective mass amplification strategy for QCM to enhance its assay sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement.

The surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) aptasensors combined with rolling circle amplification and bio-bar-coded AuNP enhancement have been applied to detect the human α-thrombin for the first time. The assay platform exhibited excellent selectivity and sensitivity with detection limit as low as 0.78 aM.

متن کامل

Detection of Staphylococcus epidermidis by a Quartz Crystal Microbalance Nucleic Acid Biosensor Array Using Au Nanoparticle Signal Amplification

Staphylococcus epidermidis is a critical pathogen of nosocomial blood infections, resulting in significant morbidity and mortality. A piezoelectric quartz crystal microbalance (QCM) nucleic acid biosensor array using Au nanoparticle signal amplification was developed to rapidly detect S. epidermidis in clinical samples. The synthesized thiolated probes specific targeting S. epidermidis 16S rRNA...

متن کامل

Vesicles for Signal Amplification in a Biosensor for the Detection of Low Antigen Concentrations

The sensitivity of biosensors is often not sufficient to detect diagnostically relevant biomarker concentrations. In this paper we have utilized a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) to detect dissipative losses induced by the attachment of intact vesicles. We modified a sandwich assay by coupling the secondary antibodies to vesicles. This resulted in an increase of ...

متن کامل

A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification.

In this work, a simple and novel quartz crystal microbalance (QCM) assay is demonstrated to selectively and sensitively detect the adenosine triphosphate (ATP). The amplification process consists of circular nucleic acid strand-displacement polymerization, aptamer recognition strategy and nanoparticle signal amplification. With the involvement of an aptamer-based complex, two amplification reac...

متن کامل

Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 142 14  شماره 

صفحات  -

تاریخ انتشار 2017